采用齐格勒方法进行PID控制原理实验

数据采集DAQ与通信票圈作品 | 基础教程

钢铁侠   项目发起人  2022-02-09

比例-积分-微分(PID)控制器是最常见的反馈控制形式,应用非常广泛,例如车辆的定速巡航和无人机的电机控制。
PID 控制器的目的是驱动过程达到特定的输出,通常叫做设定点。控制器的反馈被用于调节和优化对过 程的控制。
本项目旨在介绍 Moku:Go 的 PID 控制器,以及如何轻松地将其整合到实验室环境中,用于控制理论的教学。一般来说,控制理论主要是通过严谨的数学模型和计算来进行教学,只有极少数实验室会带领课堂控制某个物体的温度或直流电机的速度。这份应用说明介绍了一种控制理论教学的新方法,采用更为直观的组件帮助学生更好地将课堂学习的理论与实际控制系统联系起来。这种方法使用一个直流电机电扇、一个红外距离传感器和一台 Moku:Go 对一颗乒乓球的高度实现控制。
Moku:Go 中包含一个集成示波器、PID 控制器、波形发生器和可编程电源,能够驱动电机控制电路、采集传感器数据,并输出特定信号来控制直流电机的速度。这样, 通过对比乒乓球的上升时间、过冲距离和稳定高度等参数,就能很明显地表现出使用和不使用 PID 控制器的差异。用户还可以通过 Moku:Go 的应用程序进行实时调整,使学生看到不同 PID 增益如何在数学和实际上影响系统。

项目详情

项目创意灵感
比例-积分-微分(PID)控制器是最常见的反馈控制形式,应用非常广泛,例如车辆的定速巡航和无人机的电机 控制。PID 控制器的目的是驱动过程达到特定的输出,通常叫做设定点。控制器的反馈被用于调节和优化对过 程的控制。
设计特色创新
本项目使用Moku:Go 自带的PID控制器并采用齐格勒-尼克尔斯方法进行 PID 调整,直观,快速,高效。
系统原理功能
齐格勒-尼克尔斯调整方法使用开环系统的瞬态阶跃响应来确定 PID 控制器初始的 PID 参数。这些数值并不能很好地适配每个系统,控制器也需要后续进行验证和调整。但是,它为大多数控制系统提供了一个可靠的起点。这个方法只能用于开环阶跃响应类似于 S 形曲线的系统,这意味着它没有共轭复数极点。
完成情况概述
从开环响应到闭环响应后,上升时间、稳定时间、过冲距离和下冲距离都得到明显改进。本项目成功展示了使用普通组件和 Moku:Go 进行直观 PID 控制器实验的方法。这个实验共使用了 Moku:Go 的 4 种仪器功能,包括示波器、波形发生器、PID 控制器和 3 个可编程电源(16 V和两个 5 V)。
项目采用平台:
Moku:Go
数量1

我要评价